Controllable light capsules employing modified Bessel-Gauss beams

نویسندگان

  • Lei Gong
  • Weiwei Liu
  • Qian Zhao
  • Yuxuan Ren
  • Xingze Qiu
  • Mincheng Zhong
  • Yinmei Li
چکیده

We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptically Symmetric Polarized Beams

We study the free-propagation features of an optical field endowed with a non-uniform polarization pattern with elliptical symmetry. The fields derived in this way are called Elliptically Symmetric Polarized Beams (ESPB for short). Some properties of these fields are analysed. Moreover, it is shown how it is possible to obtain such light beams by applying the results to Bessel-Gauss beams.

متن کامل

A tale of two beams: an elementary overview of Gaussian beams and Bessel beams

An overview of two types of beam solutions is presented, Gaussian beams and Bessel beams. Gaussian beams are examples of non-localized or diffracting beam solutions, and Bessel beams are example of localized, non-diffracting beam solutions. Gaussian beams stay bounded over a certain propagation range after which they diverge. Bessel beams are among a class of solutions to the wave equation that...

متن کامل

Exact and geometrical optics energy trajectories in twisted beams

Energy trajectories, that is, integral curves of the Poynting (current) vector, are calculated for scalar Bessel and Laguerre-Gauss beams carrying orbital angular momentum. The trajectories for the exact waves are helices, winding on cylinders for Bessel beams and hyperboloidal surfaces for Laguerre-Gauss beams. In the geometrical-optics approximations, the trajectories for both types of beam a...

متن کامل

Integrated optical phased arrays for quasi-Bessel-beam generation.

Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions n...

متن کامل

Vector Helmholtz-Gauss and vector Laplace-Gauss beams.

We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016